New Concepts for Safe and Low-cost CCS

Takeshi Tsuji

School of Engineering, University of Tokyo

tsuji@sys.t.u-tokyo.ac.jp

Projects relevant to CCS in our lab

Project 1

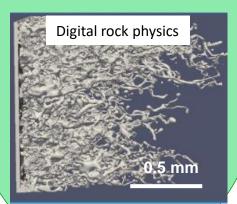
Molecular scale(nm-µm)

Main effort:

 CO_2

Sic

- CO2 mineralization
- Low purity CO2 storage


Molecular Dynamics

Liang et al. 2017 Accounts of Chemical Research

Project 2 Pore scale (µm-m)

Main effort:

- Optimal CO2 storage conditions
- Relationship among hydraulic, seismic and electric properties

Tsuji et al., 2016 Advances in Water Resources

Project 3

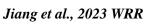
Reservoir scale (m-km)

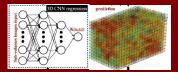
Main effort:

- Continuous monitoring system Minimal seismic source system for monitoring
- Develop distributed acoustic sensing

Borehole-type

2


Size: 10 cm Propagation: 1km

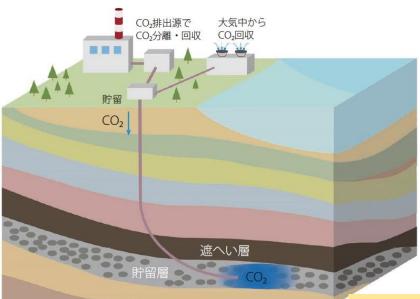

Tsuji et al., 2022 Seis. Res. Letts.

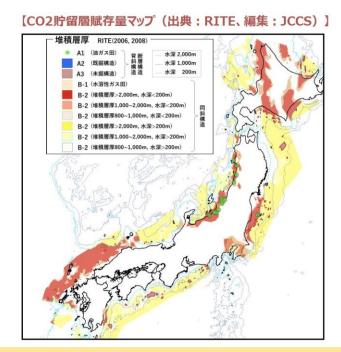
Project 4: Linkage of multi-scale phenomena

- Evaluate influence of slip flow
- Machine Learning for upscaling •

Singh et al., 2017 Phys. Rev. E

Carbon Capture and Storage

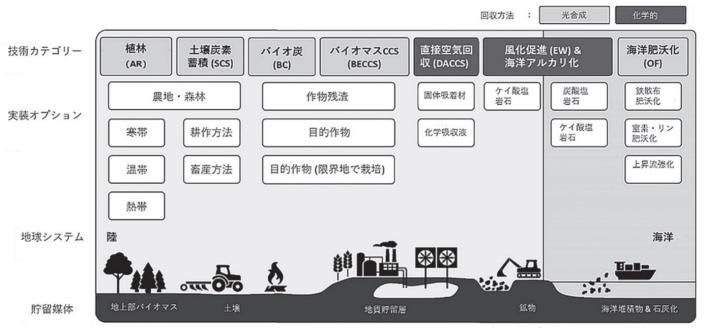

Reduce CO₂ emission by injecting CO₂ into subsurface reservoir


- Near-term impact
- Huge potential

> Cost?

Safety?

- We can inject >100 billion tons of CO₂ only around Japanese Island (Ogawa et al. 2011)
- **100 years of total CO₂ emission from Japan**


辻**, 2023**

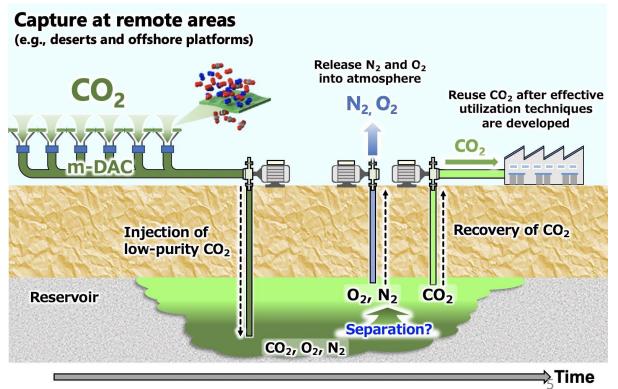
Recent evaluation based on detailed geophysical data identified 11 sites for CO_2 storage (METI, 2023).

Negative emission to achieve carbon-neutral in 2050

• Capture CO2 from atmosphere and store it into the geological formation

- Bioenergy with Carbon Capture and Storage (BECCS)
- Direct Air Carbon Capture and Storage (DACCS)

出所)加藤悦史(2020)大気中CO2を除去するネガティブエミッション技術の動向~パリ九奥底の長期目標達成のために~,基本エネルギー総合工学 Vol.42 No.4 2020.1


Capture of high-purity CO2 needs high cost...

Storage of low-purity CO₂ storage from membrane-DAC

- CO₂ captured at plants (including SOx and NOx) must be refined to high purity
- But, the CO₂ captured via m-DAC consists of non-hazardous components (N₂ and O₂)
 - Storage of low-purity CO₂ from DAC reduces capture costs

If this concept is acceptable, we can conduct at any places

- Desert (depleted oil/gas reservoir)
- Offshore platform with wind turbine

Tsuji et al. 2021 GHG

52.5 °C & 15 MPa (1500 m)

N_{CO2} / N_{total}

0- CO.

0- N2

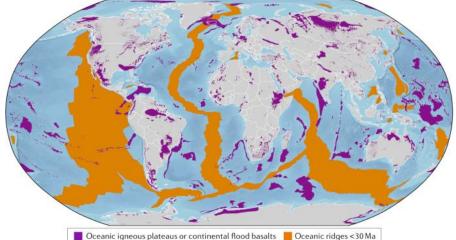
-0-0-

С


600

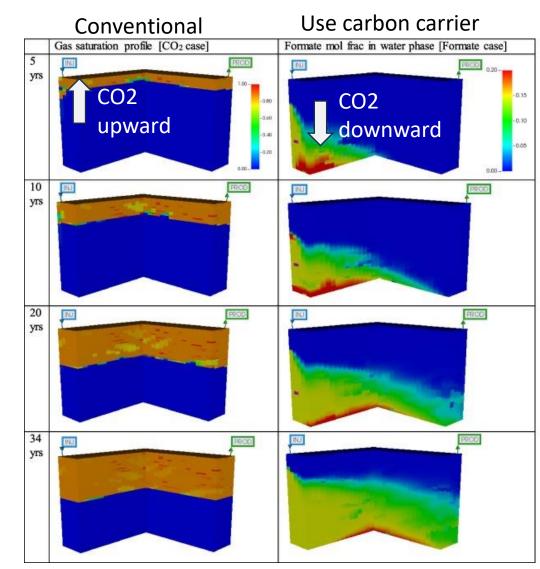
Concept to increase potential and safety

CO2 mineralization


- >95% of the injected CO₂ into basaltic rock has transformed to carbonate minerals within 2 yr
- Basalt is common on the earth
- Large potential and safe storage

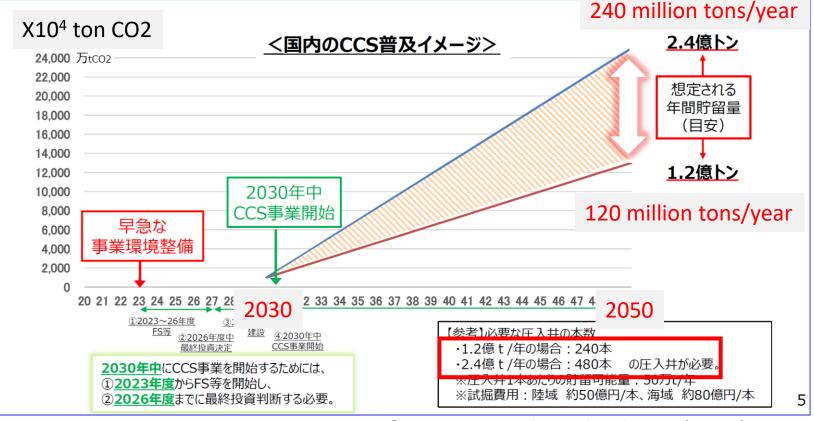
Carbfix project in Iceland Matter et al., 2016

Potential site for CO₂ mineralization (Snæbjörnsdóttir et al., 2020)



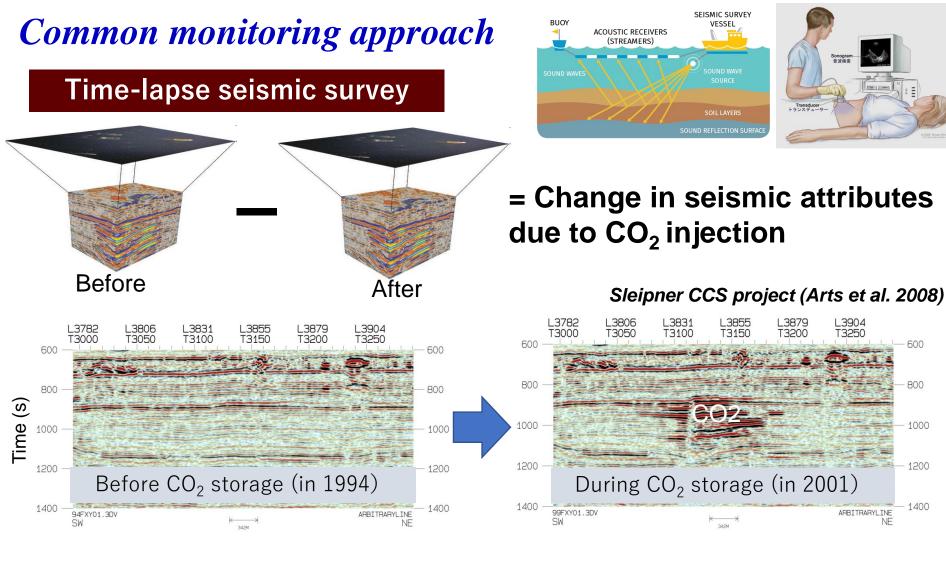
Concept to increase potential and safety

Use carbon carrier for safe CO₂ storage


- Formate solution and nano bubble CO₂ are proposed as a carbon carrier for geological storage
 - CO₂ and formate injection (or nano-bubble CO₂ injection) showed no upward buoyancydriven flux, unlike the conventional CO₂ injection
 - ➢ Reduce the CO₂ leakage
 - Suitable approach in reservoir close to faults?

Oyenowo et al., 2023 FUEL

CCS roadmap in Japan


The roadmap envisages 120 to 240 million tons CO2 stored per year by 2050
Need to launch new CCS projects and increase the annual storage capacity by about 6 to 12 million tons annually during 20 years from 2030 to 2050

Japanese ministry of economy trade and industry (METI), 2022

https://www.meti.go.jp/shingikai/energy_environment/ccs_choki_roadmap/jisshi_kento/pdf/001_04_00.pdf

Need to manage large number of CO₂ storage sites
Monitoring is the most crucial to obtain public acceptance

High cost

- Longer time interval for data acquisition (low temporal resolution)
- Difficult to identify rapid CO₂ leakage

Develop permanent monitoring system Low cost Continuous

600

800

1400

Develop permanent active seismic source for accurate monitoring of CO_2 storage reservoir

Deploy at geothermal station

Time (s)

Size: ~1m Chirp In 2016 Fukuoka 33.5 33 -10Latitude 10 20 25 15 Time (min) 10 One cycle in 50 s seismometer 32 5 **Kyushu Island** 31.5 Southwest Japan -10 <u>-</u>5 129.5 130 130.5 131 131.5 132 132.5 10 Longitude Time (min) Hi-net seismometers Eccentric Mass (10 kg) Source: vertical 100 **Receiver: vertical** 8000N at 20 Hz (kg source Continuously generate the vibration (sweep) 80 Improve S/N by stacking the longer-term signal Distance from the Signals from the monitoring source reach ~80 km by 4 months stacking 20 Monitor extensive area (multi CO₂ storage sites) 20 25 30 5 10 15

Tsuji et al., 2021 Scientific Reports

Portable Active Seismic Source (PASS)

Size: ~1 m

Tsuji et al., 2021 Sci Rept

~80 km propagation

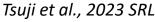
Size: ~0.1 m 4 cm motor

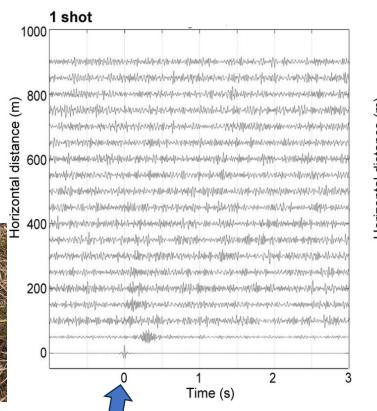
Tsuji et al., 2023 SRL

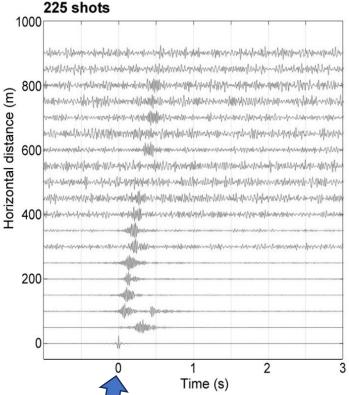
? m propagation

Signal enhancement by stacking

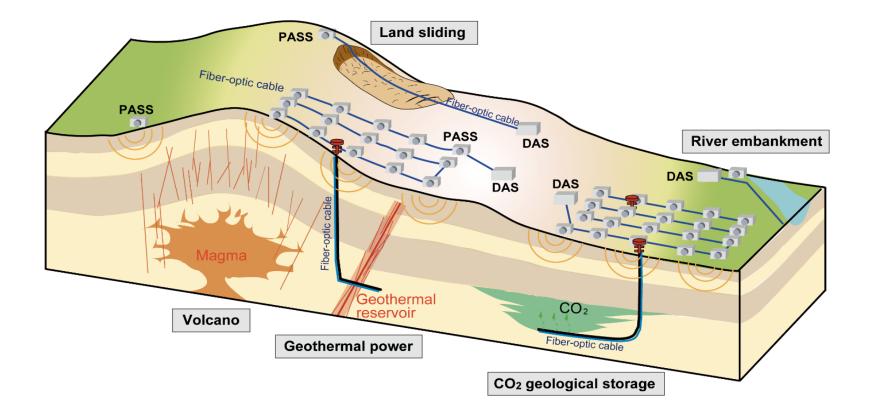
a


10cm box


(4cm motor)

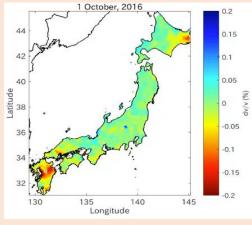

100 m

Signal from PASS with ~4cm motor propagated ~1 km!

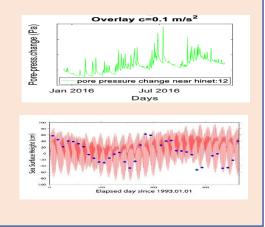


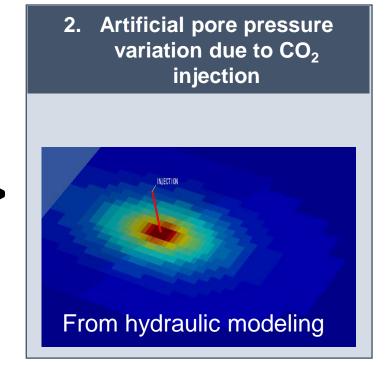
Continuous monitoring for CO₂ storage sites

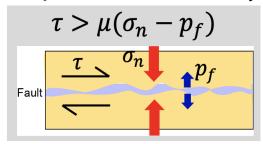
- Deploy many receivers (e.g., new type receivers, such as DAS)
- Generate monitoring signal using many small sources (PASS)
- Continuously monitor several CO₂ injection sites with low-cost



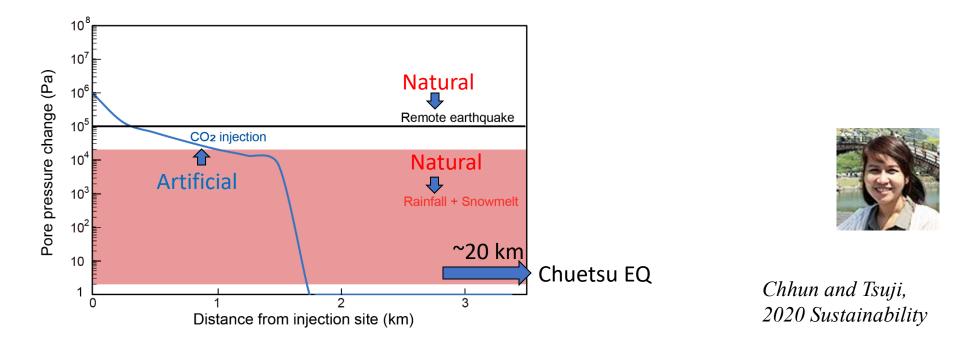
Method to distinguish between natural and CO_2 induced earthquakes


- 1. Measure natural pore pressure variation due to weather or remote earthquake from monitoring
- 2. Measure (or calculate) artificial pore pressure variation due to CO_2 injection via numerical simulation
 - If (1) natural pore pressure variation is much larger than (2) artificial pore pressure variation, the EQ could be natural one.


1. Natural pore pressure variation due to weather and remote EQ


From seismic velocity

From hydraulic monitoring



Chhun and Tsuji, 2020, Sustainability

14

Evaluate the Chuetsu earthquake (Mw6.8) close to the Nagaoka CCS site, using our evaluation method

- Natural pore pressure variation is larger than the artificial pore pressure variation due to CO_2 injection at >1km far from CO_2 injection site.
- Epicenter of the Chuetsu EQ was at ~20km from the injection site
- The Chuetsu earthquake could be natural one

Provide scientific-based approach to classify these earthquakes!

CCS/CCUS could be one of the key technology for carbon neutral world

- Japanese government and private companies try to launch new CCS projects and increase the annual storage capacity
- We should consider safe and low-cost CO2 storage
 - Low-purity CO2 storage
 - CO2 Mineralization
 - Use carbon carrier (e.g., formate solution)
 - New monitoring system (device and method)
 - New seismic source (PASS)
 - Distinguish natural and CO2 injection-induced earthquakes
 - Others