Carbon–negative and Sustainable CO₂ Conversion to Value– added Chemicals using Microbial Electrosynthesis

신재생전기에너지와 미생물전기합성 기반 CO₂ 전환을 통한 탄소네가티브 고부가가치 화학물질 생산

김 중 래

부산대학교 화공생명공학부

j.kim@pusan.ac.kr

http://bioenergy.pusan.ac.kr

Contents

- 1_ Introduction to Bioelectrochemical System(BES) Electroactive microbe and BES system
- 2 Conversion of CO₂ to Acetate, PHB & CH₄ Microbial electrosynthesis (MES) Renewable electricity & Power to Product (P2P)
- 3_ Summary

Bioelectrochemical Sysetem (BES)

BES converts chemical energy of organic waste, biomass into electricity by **microbial fuel cell (MFC)** or produce hydrogen/chemical products through **microbial electrosynthesis cells (MEC or MES)**

Electrochemically Active Bacteria

전기화학적 활성 미생물

Extracellular Electron Transport

Kracke et al. Frontiers in Microbiology 2015 5

Microbe-Electrode Hybrid System

- Live cell continuously interacts with electrode to exchange respiratory electrons
- Applied potential influences gene expression and metabolic pathway

Microbial fuel cell & Microbial electrosynthesis cell

Microbial fuel cell (MFC)

- Spontaneous oxidation/reduction
- Microbial catalyst on anode
- Production of electricity from biodegradable organic materials and waste

Microbial electrosynthesis cell (MEC)

- Non-spontaneous oxidation/reduction
- Microbial catalyst on cathode
- H₂, CH₄, VFA and platform chemical production by electrical energy
- MES can be used for upgrading of CO₂

Renewable Energy vs. Electricity

WIND

TIDAL

SOLAR

GEOTHERMAL

Electricity is key of future energy infra for production/storage /transportation/utilization

Notes: CSP = concentrating solar power; TWh=terawatt hour.

Demand of Fossil Oil for Refinery

Carbon Capture & Utilization (CCU)

DOI:10.2118/194190-PA

Carbon Neutral Process by CO₂ Valorization

$\begin{array}{c} \hline CO_2 \end{array} \rightarrow \begin{array}{c} \hline Utilization \\ \hline $						
생성물	반응	필요한 전 자의 개수	<i>E°</i> (V vs. SHE)			
со	$\mathrm{CO_2}\ +\ 2\mathrm{H}^+\ +2\mathrm{e}^- \rightarrow \mathrm{CO}\ +\ \mathrm{H_2O}$		-0.53			
Formate	$2CO_2 + 2H^+ + 2e^- \rightarrow HCOOH$	2e-	-0.61			
Oxalate	$2\text{CO}_2 + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{H}_2\text{C}_2\text{O}_4$		-0.913			
Formaldehyde	$\mathrm{CO_2}\ +\ 4\mathrm{H^+}\ +4\mathrm{e^-} \rightarrow \mathrm{HCHO}\ +\ \mathrm{H_2O}$	4e⁻	-0.48			
Methanol	$\mathrm{CO}_2 \ + \ \mathrm{6H^+} \ + \mathrm{6e^-} \ \rightarrow \ \mathrm{CH_3OH} \ + \ \mathrm{H_2O} \ \qquad \mathrm{6e^-}$		-0.38			
Methan	$\mathrm{CO_2}\ +\ 8\mathrm{H^+}\ +8\mathrm{e^-}\ \rightarrow\ \mathrm{CH_4}\ +2\mathrm{H_2O}$	8e-	-0.24			
Ethylene	$2CO_2 + 12H^+ + 12e^- \rightarrow C_2H_4 + 4H_2O$	-0.349				
Ethanol	$2CO_2 + 12H^+ + 12e^- \rightarrow C_2H_5OH + 3H_2O$	12e	-0.329			
Ethane	$2CO_2 + 14H^+ + 14e^- \rightarrow C_2H_6 + 4H_2O$	14e-	-0.27			
Propanol	$3CO_2 + 18H^+ + 18e^- \rightarrow C_3H_7OH + 3H_2O$	18e-	-0.31			

• CO₂ is very stable and most oxidized form of carbon

• Electron/reducing power is required for conversion

Electrocatalytic CO₂ER reaction pathways

	Advantage	Disadvantage	
Chemical Catalyst	Fast reaction rate, Study of reaction mechanism	High temp/pressure, Limited products, Catalyst poison, Limited lifecycle	
Biocatalyst	<u>Catalyst reproducible</u> , High value- added products, <u>Room Temp/pressure</u> , Improvement of performance by OMICS	Low reaction rate, Difficult to control the mechanism	

Power to Product (P2P) for CO₂ Conversion

Electricity-based single cell protein (SCP) by P2P and CCU

Renewable hydrogen based sustainable protein production

Hydrogen electrolyzer is a major platform for Power to X

Power to Product (P2P) for CO₂ Conversion

Three different SCP production strategies

- The PV-driven SCP produces more protein per hectare as compared to sugar beet SCP and conventional soybean agriculture
- The protein yields and amount of people that could be fed from 1 ha
- Assumption of an irradiance of 2,000 kWh·m⁻²·y⁻¹

Microbial Electrosynthesis Cell (MEC)

Young Eun Song and Jung Rae Kim. 2022. Chemical Engineering Journal. 427:131885

Acetate Production from CO₂ in MEC

Young Eun Song and Jung Rae Kim. 2022. Chemical Engineering Journal. 427: 131885

Metabolic Engineering for Acetate Conversion

ACS Publications

www.acs.org

Mutyala and Kim. 2023. ACS Omega. 8:29. 26231-26242

CO₂ to H₂ with *Rhodobacter sphaeroides*

R. sphaeroides

- Photoheterotrophic H₂
 production
- No Photosystem II Light energy → ATP (PS1)

Photoautotrophic CO₂ conversion & H₂ production *R. sphaeroides*

- -0.9V vs. Ag/AgCl applied
 - under light (5000 lux)
- Consumption of CO₂ and

simultaneously H₂

production

CO₂ 100%

Shuwei Li and Jung Rae Kim. 2021. Bioresource Technology. 320:124333

CO₂ to H₂ with *Rhodobacter sphaeroides*

Planktonic cell attach to electrode surface

Coulomb Recovery into H₂

Shuwei Li and Jung Rae Kim. 2021. Bioresource Technology. 320:124333

añe

ISSN 1385-8947

Polyhydroxybutyrate (PHB) Production

PHB

Shuwei Li & Jung Rae Kim et al. Electron uptake from solid electrodes promotes the more efficient conversion of CO2 to polyhydroxybutyrate by using *Rhodobacter sphaeroides*. Chemical Engineering Journal 469 (2023) 143785

PHB

Electrode-driven regulation of CO₂ conversion pathway

Shuwei Li and Jung Rae Kim. 2023. Chemical Engineering Journal. 469:143785

Shuwei Li and Jung Rae Kim. 2023. Chemical Engineering Journal. 469:143785

Attachement of cell on electrode surface

R. Sphaeroides stick to the various carbon surface in MES

- Carbon rod
- ITO
- Titanium mesh
- Glassy carbon

FE-SEM of electrode-associated cell

R. Sphaeroides may uptake electron directly from the cathode electrode through Fla2 flagella sysem

Shuwei Li and Jung Rae Kim. 2023. Chemical Engineering Journal. 469:143785

24

Pathway of PHB synthesis from CO₂

Relative gene expression profile

Scaled-up MEC Reactor for H₂ Production

Two-chamber MEC (8L)

Single-chamber MEC (5L)

Upgrading AD Biogas with MEC

Minsoo Kim and Jung Rae Kim. 2022. Chemical Engineering Journal 446:137079

Upgrading AD Biogas with MEC

Conversion of CO₂ to CH₄ in scale-up MEC reactor

100 1.6 80 1.5 Total gas volume (L) 60 1.4 40 20 1.3 0 Initial 1 2 3 5 4 Time (day)

Cost estimation of MES CH₄ production

* Below 300 kWh industrial, ~ 6 cent/ kWh

Reactor Volume	Applied Potential (V vs Ag/AgCl)	Temp.	CH₄ Production rate (L CH₄/m² cat/hour)	CH₄ Production per energy (L CH₄/kWh)	Cost of CH ₄ production (USD/Nm ³ CH ₄)
250 + 250 mL	-1.0V	30	2.9	259	0.24 USD
3L + 3L	-1.0V	40	2.29	14.9	4.13 USD

Gas content (%)

Calculated at standard temperature and pressure (STP) Calculated with the immersed cathode surface area.

반응기에 인가되는 전압대비, 메탄생성량을 이용하여 계산하였음. (설치비, 운영비, 약품비, 인건비, Utility관리비 제외)

29

CO₂ to CH₄ with MES

전극상 메탄생산 미생물의 고농도 배양

- CH₄ 전환 반응기에서 각각 메탄생성균이 부착된 전극과 배양액을 분리하여 Serum bottle에 배양함.
- Serum bottle 조건의 경우 전자(Electron) 공급을 위해 Potentiostat 대신 H_2 를 공급하였음.
- Methanogen attached electrode만 넣은 Serum bottle에서 CO₂와 H₂의 소모를 확인하였으며, 이는 <u>메탄</u>
 <u>생성에서 전극상 부착된 군집이 주요한 역할을 하고 있음</u>을 나타냄.

Effect of Hydrodynamic Shear Stress

Microbe-Electrode Interaction

1. 미생물-전극 반응을 어떻게 분석할 것인가?

2. 생물전기화학시스템으로 무엇을 생산할 것인가?

3. 생물전기화학시스템의 실용화 전략은?

→ 미생물-전극 분석 및 제어

- → Carbon capture & utilization (CCU)
- \rightarrow Electro-fermentation
- \rightarrow Power to Product (P2P)

한국연구재단 기초연구실 융합연구 (2022-현재)

연구진 구성

Biofunctionalization of Electrode Surface by Live Cell

May et al. 2016. Curr Opin Biotechnology

PNU Bioenergy & Bioprocess Engineering Lab (BBE Lab)

http://bioenergy.pusan.ac.kr/

- **Professor** Dr. Jung Rae Kim
- Researcher Dr. Eun-Hee Seol
- PhD Students Ms. Sakuntala M.
 - Mr. Shuwei Li Mr. Minsu Kim Ms. Dasuel Kong Mr. Himanshu Kandelwal
 - Ms. Eun Su Kim
- MS Students
 - s Mr. Jonathan Badillo Ms. Eun Ju Park
 - Ms. Wonkyung Park

Acknowledgement

- Bioelectrochemical system for Power to Product CO₂ Valorization, Mid-Career Researcher Program, National Research Foundation of Korea & Ministry of Science and ICT, Korea
- Bio P2P-based CO₂ Valorization Lab, Basic Research Laboratory Program (BRL), National Research Foundation of Korea & Ministry of Science and ICT, Korea
- Bio-Electrosynthetic CO₂ valorization for value-added chemical production Korea-Sweden Research Cooperation Program (STINT). National Research Foundation of Korea
- BK21 PLUS Center for Advanced Chemical Technology, Pusan National University, National Research Foundation of Korea
- Bioelectrochemical System for Biogas upgrading Project, GS E&C

